Existence of periodic solutions for first-order evolution equations without coercivity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Periodic Solutions for Higher-order Nonlinear Difference Equations

In this article, we study a higher-order nonlinear difference equation. By using critical point theory, we establish sufficient conditions for the existence of periodic solutions.

متن کامل

Existence of multiple periodic solutions for first order functional differential equations

We obtain sufficient conditions for the existence of three T -periodic solutions of the first order functional differential equation u(t) = a(t)g(u(t))u(t) − b(t)f (u(t − τ(t))), where a, b, τ ∈ C(R, R) are T -periodic functions, f , g ∈ C(R, R), and g is not necessarily bounded. As an application of our theorem, we also derived criteria for the existence of three T -periodic solutions of the e...

متن کامل

Existence of Solutions to First-Order Periodic Boundary Value Problems

This article investigates the existence of solutions to boundary value problems (BVPs) involving systems of first-order ordinary differential equations and two-point, periodic boundary conditions. The methods involve novel differential inequalities and fixed-point theory to yield new theorems guaranteeing the existence of at least one solution. AMS 2000 Classification: 34B15

متن کامل

Anti-periodic solutions for fully nonlinear first-order differential equations

In this paper, we study the anti-periodic boundary value problems for nonlinear first-order differential equations both in finite and in infinite dimensional spaces. Several new existence results are obtained. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(03)00261-0